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Keeping your State at Bay: 
Patterns to Limit Kafka Streams Store Sizes

Why did the stream processor 
become a philosopher?

…because it realized time is just an 
ever-flowing state of events.
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Agenda
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● Subject: "Limiting Store Sizes"
● Key Challenges (Growing State)
● Data Expiration Requirements
● TTL Patterns in Kafka Streams
● Dealing with Large(!) State
● Summary
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Subject: "Limiting Store Sizes"

"Time is of the essence"

● Data loses relevance over 
time

● Windows keep focus on 
recent data

● Outdated events are evicted

● Challenge: dynamic expiry, 
based on predicates
(not just time-based)
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Key Challenges (Growing State)
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● Resource Usage
● Scaling Issues
● Rebalancing Delays
● Longer Recovery 

(State Restoration)
● Operational Overhead
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Data Expiration Requirements
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● Dynamic Expiry Rules
(Predicate -> Business Logic)

● Customisable TTL 
& Cleanup Interval

● Efficient Eviction Mechanism

● No/Little Impact on Stream Processing
(NFR -> Latency)
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TTL Patterns in 
Kafka Streams

7



© 2024 Thriving.dev • All rights reserved

Fundamentals: 
Processor API 
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● Maximum flexibility
● Access to state stores

for custom stateful operations
● Schedule a punctuator
● Manual forward and commit

(aka PAPI)
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Fundamentals: 
State Stores
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Store Variants 
● Key-Value
● Window
● Session

Key-Value Store Types
● Persistent (RocksDB)
● InMemory
● LRUCache
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Fundamentals: 
Punctuator
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● Periodic tasks within processors
● Scheduled based on

○ Stream-Time or 
○ Wall-Clock-Time

● Access to ProcessorContext



© 2024 Thriving.dev • All rights reserved

Kafka Streams Topology Design - Notation
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Topology

Processor
Context

Key-Value
Record
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Pattern 1: Processor, punctuate, iterate all(), delete
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Pattern 1: Processor, punctuate, iterate all(), delete
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Pattern 2: KTable, punctuate, iterate all(), send tombstones
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Pattern 2: KTable, punctuate, iterate all(), send tombstones
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Pattern 3: LRUCache, changelog retention=[compact,delete]
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Pattern 3: LRUCache, changelog retention=[compact,delete]
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● Know your data (volumes)
○ add sufficient buffer
○ caution: risk of data loss in exceptional situations

       (e.g. increased no. of events due to unforeseeable reasons)

● maxCacheSize := by stream task
● InMemory…

      LinkedHashMap<Bytes, byte[]>
● Entries are serialized
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Pattern 4: RocksDB TTL, changelog retention=[compact,delete]
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Pattern 4: RocksDB TTL, changelog retention=[compact,delete]
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(1) RocksDB can be opened with Time to Live support
● insertion based (not update, not access)
● RocksDB docs:

○ non-strict 'ttl'
○ values are deleted in compaction only
○ get/Iterator may return expired entries

(2) Mitigate data resurrection through
       [compact,delete] changelog topic

(3) RocksDBConfigSetter is configured once, 
       and therefore applies to the entire topology…
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Pattern 4: RocksDB TTL, changelog retention=[compact,delete]
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Dealing with Large(!) State
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● punctuation pauses the stream (task)
-> latency spikes

● iterating store entries takes time
-> grows linearly with no. of entries

● entries (kv) are deserialized
-> cpu, memory, GC
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Pattern 5: Processor, punctuate, idx store, range(), delete
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● Use separate 'ttl-store' to index keys for eviction

● Prefix keys with timestamp
(epoch timestamp, or ISO 8601)

● Also works for time-based keys (ULID, UUID v7)

● Challenging if time-to-delete can change over time
(deleting the previous entry)

Pattern 5: Processor, punctuate, idx store, range(), delete
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Pattern 5: Processor, punctuate, idx store, range(), delete

24



© 2024 Thriving.dev • All rights reserved

● Time-based IDs. Iterate state stores; evict based on key
● ☝ Value is still read into memory as byte[]

Pattern 6: Example UUID v7 keys, iterate, lazy-value-deserializer
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[0]: https://datatracker.ietf.org/doc/rfc9562/
[1]: https://itnext.io/why-uuid7-is-better-than-uuid4-as-clustered-index-edb02bf70056 

ULID := Universally Unique 
     Lexicographically Sortable Identifier

UUID v7 (RFC 9562)

=> 0GWWXY2G84DFMRVWQNJ1SRYCMC

https://datatracker.ietf.org/doc/rfc9562/
https://itnext.io/why-uuid7-is-better-than-uuid4-as-clustered-index-edb02bf70056
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LazySerde<T> (Value Deserializer)
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Pattern 7: Separate job, consume changelog, send tombstones
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Pattern 7: Separate job, consume changelog, send tombstones (1)
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1. get partitions
2. read log-end offsets
3. consume+process

(continue on next slide)
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Pattern 7: Separate job, consume changelog, send tombstones (2)
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1. poll
2. record expired? 

(Predicate)
3. when expired, 

send tombstone
4. continue until reaching 

log-end offsets
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Pattern 7: Separate job, consume changelog, send tombstones (2)
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● Changelog topic is not an interface but an 'internal' 
topics of the streams app

● Publishing a large number of tombstones over a short 
period of time might still cause latency spikes. 

○ (Option: throttle publishing of tombstones)

● Caution: By default, changelog is not compacted 
instantly leading to processing of outdated records

● Separate job -> more moving parts to maintain, monitor 
and operate
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Pattern 8: Punctuate, range(), time-box, stop & continue
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Pattern 8: Punctuate, range(), time-box, stop & continue
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Summary     (take with a pinch of salt)
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@TheThrivingDev

@hartmut-co-uk
@hartmut-co-uk

@thriving_dev

https://thriving.dev

Questions?

https://kstd.thriving.dev

https://github.com/thriving-dev/kafka-streams-state-ttl-patterns


