
© 2024 Thriving.dev • All rights reserved

Keeping your State at Bay:
Patterns to Limit Kafka Streams Store Sizes

Why did the stream processor
become a philosopher?

…because it realized time is just an
ever-flowing state of events.

Current 2024 • Hartmut Armbruster • Thriving.dev

© 2024 Thriving.dev • All rights reserved

Architecture • Data • Cloud-native •
Distributed Systems • High-load/Scalability •
Stream Processing • Backend • Web Front-End •
Reactive Programming • Kotlin/Java • TS/JS •
Vue.js • Nuxt.js • Kubernetes • GitOps

2

Software Architect, Developer,
Independent Consultant

Hartmut Armbruster

© 2024 Thriving.dev • All rights reserved

Agenda

3

● Subject: "Limiting Store Sizes"
● Key Challenges (Growing State)
● Data Expiration Requirements
● TTL Patterns in Kafka Streams
● Dealing with Large(!) State
● Summary

by Dall-E 3

© 2024 Thriving.dev • All rights reserved

Subject: "Limiting Store Sizes"

"Time is of the essence"

● Data loses relevance over
time

● Windows keep focus on
recent data

● Outdated events are evicted

● Challenge: dynamic expiry,
based on predicates
(not just time-based)

4

© 2024 Thriving.dev • All rights reserved

Key Challenges (Growing State)
5

● Resource Usage
● Scaling Issues
● Rebalancing Delays
● Longer Recovery

(State Restoration)
● Operational Overhead

© 2024 Thriving.dev • All rights reserved

Data Expiration Requirements
6

● Dynamic Expiry Rules
(Predicate -> Business Logic)

● Customisable TTL
& Cleanup Interval

● Efficient Eviction Mechanism

● No/Little Impact on Stream Processing
(NFR -> Latency)

© 2024 Thriving.dev • All rights reserved

TTL Patterns in
Kafka Streams

7

© 2024 Thriving.dev • All rights reserved

Fundamentals:
Processor API

8

● Maximum flexibility
● Access to state stores

for custom stateful operations
● Schedule a punctuator
● Manual forward and commit

(aka PAPI)

© 2024 Thriving.dev • All rights reserved

Fundamentals:
State Stores

9

Store Variants
● Key-Value
● Window
● Session

Key-Value Store Types
● Persistent (RocksDB)
● InMemory
● LRUCache

© 2024 Thriving.dev • All rights reserved

Fundamentals:
Punctuator

10

● Periodic tasks within processors
● Scheduled based on

○ Stream-Time or
○ Wall-Clock-Time

● Access to ProcessorContext

© 2024 Thriving.dev • All rights reserved

Kafka Streams Topology Design - Notation
11

Topology

Processor
Context

Key-Value
Record

© 2024 Thriving.dev • All rights reserved

Pattern 1: Processor, punctuate, iterate all(), delete

12

© 2024 Thriving.dev • All rights reserved

Pattern 1: Processor, punctuate, iterate all(), delete

13

© 2024 Thriving.dev • All rights reserved

Pattern 2: KTable, punctuate, iterate all(), send tombstones

14

© 2024 Thriving.dev • All rights reserved

Pattern 2: KTable, punctuate, iterate all(), send tombstones

15

© 2024 Thriving.dev • All rights reserved

Pattern 3: LRUCache, changelog retention=[compact,delete]

16

© 2024 Thriving.dev • All rights reserved

Pattern 3: LRUCache, changelog retention=[compact,delete]

17

● Know your data (volumes)
○ add sufficient buffer
○ caution: risk of data loss in exceptional situations

 (e.g. increased no. of events due to unforeseeable reasons)

● maxCacheSize := by stream task
● InMemory…

 LinkedHashMap<Bytes, byte[]>
● Entries are serialized

© 2024 Thriving.dev • All rights reserved

Pattern 4: RocksDB TTL, changelog retention=[compact,delete]

18

© 2024 Thriving.dev • All rights reserved

Pattern 4: RocksDB TTL, changelog retention=[compact,delete]

19

(1) RocksDB can be opened with Time to Live support
● insertion based (not update, not access)
● RocksDB docs:

○ non-strict 'ttl'
○ values are deleted in compaction only
○ get/Iterator may return expired entries

(2) Mitigate data resurrection through
 [compact,delete] changelog topic

(3) RocksDBConfigSetter is configured once,
 and therefore applies to the entire topology…

© 2024 Thriving.dev • All rights reserved

Pattern 4: RocksDB TTL, changelog retention=[compact,delete]

20

© 2024 Thriving.dev • All rights reserved

Dealing with Large(!) State
21

● punctuation pauses the stream (task)
-> latency spikes

● iterating store entries takes time
-> grows linearly with no. of entries

● entries (kv) are deserialized
-> cpu, memory, GC

© 2024 Thriving.dev • All rights reserved

Pattern 5: Processor, punctuate, idx store, range(), delete

22

© 2024 Thriving.dev • All rights reserved

● Use separate 'ttl-store' to index keys for eviction

● Prefix keys with timestamp
(epoch timestamp, or ISO 8601)

● Also works for time-based keys (ULID, UUID v7)

● Challenging if time-to-delete can change over time
(deleting the previous entry)

Pattern 5: Processor, punctuate, idx store, range(), delete

23

© 2024 Thriving.dev • All rights reserved

Pattern 5: Processor, punctuate, idx store, range(), delete

24

© 2024 Thriving.dev • All rights reserved

● Time-based IDs. Iterate state stores; evict based on key
● ☝ Value is still read into memory as byte[]

Pattern 6: Example UUID v7 keys, iterate, lazy-value-deserializer

25

[0]: https://datatracker.ietf.org/doc/rfc9562/
[1]: https://itnext.io/why-uuid7-is-better-than-uuid4-as-clustered-index-edb02bf70056

ULID := Universally Unique
 Lexicographically Sortable Identifier

UUID v7 (RFC 9562)

=> 0GWWXY2G84DFMRVWQNJ1SRYCMC

https://datatracker.ietf.org/doc/rfc9562/
https://itnext.io/why-uuid7-is-better-than-uuid4-as-clustered-index-edb02bf70056

© 2024 Thriving.dev • All rights reserved

LazySerde<T> (Value Deserializer)
26

© 2024 Thriving.dev • All rights reserved

Pattern 7: Separate job, consume changelog, send tombstones

27

© 2024 Thriving.dev • All rights reserved

Pattern 7: Separate job, consume changelog, send tombstones (1)

28

1. get partitions
2. read log-end offsets
3. consume+process

(continue on next slide)

© 2024 Thriving.dev • All rights reserved

Pattern 7: Separate job, consume changelog, send tombstones (2)

29

1. poll
2. record expired?

(Predicate)
3. when expired,

send tombstone
4. continue until reaching

log-end offsets

© 2024 Thriving.dev • All rights reserved

Pattern 7: Separate job, consume changelog, send tombstones (2)

30

● Changelog topic is not an interface but an 'internal'
topics of the streams app

● Publishing a large number of tombstones over a short
period of time might still cause latency spikes.

○ (Option: throttle publishing of tombstones)

● Caution: By default, changelog is not compacted
instantly leading to processing of outdated records

● Separate job -> more moving parts to maintain, monitor
and operate

© 2024 Thriving.dev • All rights reserved

Pattern 8: Punctuate, range(), time-box, stop & continue

31

© 2024 Thriving.dev • All rights reserved

Pattern 8: Punctuate, range(), time-box, stop & continue

32

© 2024 Thriving.dev • All rights reserved

Summary (take with a pinch of salt)

33

© 2024 Thriving.dev • All rights reserved

34

@TheThrivingDev

@hartmut-co-uk
@hartmut-co-uk

@thriving_dev

https://thriving.dev

Questions?

https://kstd.thriving.dev

https://github.com/thriving-dev/kafka-streams-state-ttl-patterns

